Series GBM/2

कोड नं. Code No. 55/2/1

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 16 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 16 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 26 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

55/2/1 1 P.T.O.

सामान्य निर्देश:

- (i) **सभी** प्रश्न **अनिवार्य** हैं । इस प्रश्न-पत्र में कुल **26** प्रश्न हैं ।
- (ii) इस प्रश्न-पत्र के **पाँच** भाग हैं : खण्ड अ, खण्ड ब, खण्ड स, खण्ड द और खण्ड य ।
- (iii) खण्ड अ में **पाँच** प्रश्न हैं, प्रत्येक का **एक** अंक है। खण्ड ब में **पाँच** प्रश्न हैं, प्रत्येक के **दो** अंक हैं। खण्ड द में **चार** अंक का एक मृत्याधारित प्रश्न है और खण्ड य में **तीन** प्रश्न हैं, प्रत्येक के **पाँच** अंक हैं।
- (iv) प्रश्न-पत्र में समग्र पर कोई विकल्प नहीं है। तथापि, दो अंकों वाले एक प्रश्न में, तीन अंकों वाले एक प्रश्न में और **पाँच** अंकों वाले तीनों प्रश्नों में आन्तरिक चयन प्रदान किया गया है। ऐसे प्रश्नों में आपको दिए गए चयन में से केवल एक प्रश्न ही करना है।
- (v) जहाँ आवश्यक हो आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c = 3 \times 10^8 \text{ m/s}$$
 $h = 6.63 \times 10^{-34} \text{ Js}$
 $e = 1.6 \times 10^{-19} \text{ C}$
 $\mu_o = 4\pi \times 10^{-7} \text{ T m A}^{-1}$
 $\epsilon_o = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 $\frac{1}{4\pi\epsilon_o} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
इलेक्ट्रॉन का द्रव्यमान = $9.1 \times 10^{-31} \text{ kg}$
न्यूट्रॉन का द्रव्यमान = $1.675 \times 10^{-27} \text{ kg}$
प्रोटॉन का द्रव्यमान = $1.673 \times 10^{-27} \text{ kg}$
आवोगाद्रो संख्या = $6.023 \times 10^{23} \text{ प्रति ग्राम मोल}$
बोल्टज़मान नियतांक = $1.38 \times 10^{-23} \text{ JK}^{-1}$

55/2/1 2

General Instructions:

- (i) All questions are compulsory. There are 26 questions in all.
- (ii) This question paper has **five** sections: Section A, Section B, Section C, Section D and Section E.
- (iii) Section A contains **five** questions of **one** mark each, Section B contains **five** questions of **two** marks each, Section C contains **twelve** questions of **three** marks each, Section D contains one value based question of **four** marks and Section E contains **three** questions of **five** marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in **one** question of **two** marks, **one** question of **three** marks and all the **three** questions of **five** marks weightage. You have to attempt only **one** of the choices in such questions.
- (v) You may use the following values of physical constants wherever necessary:

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} Js$$

$$e = 1.6 \times 10^{-19} C$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\epsilon_{o} = 8.854 \times 10^{-12}~C^{2}~N^{-1}~m^{-2}$$

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

Mass of electron = $9 \cdot 1 \times 10^{-31} \text{ kg}$

Mass of neutron = 1.675×10^{-27} kg

Mass of proton = 1.673×10^{-27} kg

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann constant = $1.38 \times 10^{-23} \text{ JK}^{-1}$

55/2/1 3 P.T.O.

खण्ड अ

SECTION A

1. आरेख में दर्शाए अनुसार किसी बिन्दु 'O' पर कोई बिन्दु आवेश Q स्थित है । जब Q (i) धनात्मक, और (ii) ऋणात्मक आवेशित है, तो क्या बिन्दु B पर विभव V_B की तुलना में बिन्दु A पर विभव V_A अधिक है, कम है अथवा बराबर है ?

1

)• A• E

A point charge Q is placed at point 'O' as shown in the figure. Is the potential at point A, i.e. V_A , greater, smaller or equal to potential, V_B , at point B, when Q is (i) positive, and (ii) negative charge?

iegai

O• A• B•

2. वैद्युत विद्युत्शीलता ε और चुम्बकशीलता μ के किसी माध्यम में विद्युत्-चुम्बकीय तरंगों की चाल के लिए व्यंजक लिखिए Ι

1

Write the expression for speed of electromagnetic waves in a medium of electrical permittivity ε and magnetic permeability μ .

3. क्या किसी सूक्ष्मदर्शी की आवर्धन क्षमता उपयोग किए गए प्रकाश के वर्ण पर निर्भर करती है ? अपने उत्तर की पुष्टि कीजिए ।

1

1

1

Does the magnifying power of a microscope depend on the colour of the light used? Justify your answer.

- 4. किसी OR गेट का लॉजिक (तर्क) प्रतीक खींचिए और इसकी सत्यमान सारणी लिखिए।
 Draw logic symbol of an OR gate and write its truth table.
- 5. लाल वर्ण का प्रकाश आपितत होने पर कोई प्रकाश-सुग्राही पृष्ठ प्रकाश-विद्युत्-इलेक्ट्रॉन उत्सर्जित करता है। इसी पृष्ठ पर नीले वर्ण के प्रकाश को आपितत कराने पर क्या यह पृष्ठ प्रकाश-विद्युत्-इलेक्ट्रॉन उत्सर्जित करेगा ? कारण दीजिए।

A photosensitive surface emits photoelectrons when red light falls on it. Will the surface emit photoelectrons when blue light is incident on it? Give reason.

55/2/1

खण्ड ब SECTION B

6. यंग के द्विझिरी प्रयोग में परदे के किसी बिन्दु पर, जहाँ समान तीव्रता की तरंगें व्यतिकरण करती हैं, तीव्रता ज्ञात कीजिए जब तरंगों के बीच पथान्तर (i) λ/4, और (ii) λ/3 हो ।

Find the intensity at a point on a screen in Young's double slit experiment where the interfering waves of equal intensity have a path difference of (i) λ/4, and (ii) λ/3.

2

2

2

2

2

- 7. नैज और अपद्रव्यी अर्धचालकों के बीच दो अन्तर लिखिए।
 Write two points of difference between intrinsic and extrinsic semiconductors.
- 8. संचार की प्रसारण विधा और स्थल-स्थल संचरण विधा के बीच विभेदन कीजिए और प्रत्येक का एक उदाहरण दीजिए।

 2
 Distinguish between broadcast mode and point-to-point mode of communication and give one example for each.
- 9. वोल्टता के किसी ac स्रोत से कोई प्रकाश बल्ब और कोई परिनालिका श्रेणी में संयोजित हैं। व्याख्या कीजिए कि परिनालिका के भीतर कोई लोहे की छड़ ले जाने पर प्रकाश बल्ब की चमक किस प्रकार प्रभावित होगी।

 A light bulb and a solenoid are connected in series across an ac source of voltage. Explain, how the glow of the light bulb will be affected when an
- 10. यह दर्शाने के लिए दर्पण समीकरण का उपयोग कीजिए कि किसी अवतल दर्पण के f और 2f के बीच स्थित किसी बिम्ब का प्रतिबिम्ब 2f से परे बनता है।

iron rod is inserted in the solenoid.

अथवा

- (a) उस अवस्था (शर्त) का उल्लेख कीजिए जिसमें किसी खगोलीय दूरबीन (टेलीस्कोप) में प्रचुर (बृहत्) आवर्धन प्राप्त किया जा सकता है।
- (b) अपवर्ती दूरबीन (टेलीस्कोप) की तुलना में परावर्ती दूरबीन (टेलीस्कोप) को अधिक वरीयता दिए जाने की व्याख्या के लिए दो कारण दीजिए।

55/2/1 5 P.T.O.

Use the mirror equation to show that an object placed between f and 2f of a concave mirror forms an image beyond 2f.

OR

- (a) State the condition under which a large magnification can be achieved in an astronomical telescope.
- (b) Give two reasons to explain why a reflecting telescope is preferred over a refracting telescope.

खण्ड स SECTION C

- संचार व्यवस्था में उपयोग किए जाने वाले पद 'मॉइलन सूचकांक' की परिभाषा 11. (a) दीजिए । इसका मान एक से कम या उसके बराबर क्यों रखा जाता है ?
 - 1 MHz वाहक आवृत्ति और 10 V शिखर वोल्टता के मॉड्लन के लिए 10 kHz (b) आवृत्ति और 10 V शिखर वोल्टता के संदेश सिग्नल का उपयोग किया गया है। (i) मॉइलन सूचकांक, और (ii) उत्पन्न पार्श्व बैण्डों का निर्धारण कीजिए।
 - Define the term 'modulation index,' used in communication system. (a) Why is its value kept less than or equal to one?
 - (b) A message signal of frequency 10 kHz and peak voltage of 10 V is used to modulate a carrier frequency 1 MHz and peak voltage 10 V. Determine the (i) modulation index, and (ii) side bands produced.
- बोर के अभिगृहीतों का उपयोग करके, हाइड्रोजन परमाण की nवीं कक्षा में गतिमान इलेक्ट्रॉन **12.** की कक्षीय अवधि के लिए व्यंजक व्युत्पन्न कीजिए।

Using Bohr's postulates, derive the expression for the orbital period of the electron moving in the nth orbit of hydrogen atom.

55/2/1 6

13. त्रिज्या R के किसी धात्विक गोले के पृष्ठ पर आवेश Q एकसमान रूप से वितिरत है। किसी बिन्दु 0 < x < R पर विद्युत्-क्षेत्र (E) और विद्युत् विभव (V) के लिए व्यंजक प्राप्त कीजिए। ग्राफ़ खींचकर x के साथ, जबिक 0 < x < 2R है, E और V का विचरण दर्शाइए।

A charge Q is distributed uniformly over a metallic sphere of radius R. Obtain the expressions for the electric field (E) and electric potential (V) at a point 0 < x < R.

3

3

Show on a plot the variation of E and V with x for 0 < x < 2R.

14. दिए गए परिपथ में, स्थायी धारा के साथ, संधारित्र के सिरों पर विभवान्तर और इसमें संचित आवेश परिकलित कीजिए।

In the given circuit, with steady current, calculate the potential difference across the capacitor and the charge stored in it.

55/2/1 7 P.T.O.

15. रैखिक आवेश घनत्व $+\lambda_1$ का कोई लम्बा आवेशित बेलन रैखिक आवेश घनत्व $-\lambda_2$ के किसी खोखले समाक्ष चालक बेलन से घिरा हुआ है । गाउस नियम का प्रयोग करके (i) दोनों बेलनों के बीच के किसी बिन्दु, तथा (ii) बड़े बेलन के बाहर किसी बिन्दु पर विद्युत्-क्षेत्र के लिए व्यंजक प्राप्त कीजिए ।

A long charged cylinder of linear charge density $+\lambda_1$ is surrounded by a hollow coaxial conducting cylinder of linear charge density $-\lambda_2$. Use Gauss's law to obtain expressions for the electric field at a point (i) in the space between the cylinders, and (ii) outside the larger cylinder.

16. बायो-सावर्ट नियम का उपयोग करके त्रिज्या R के किसी धारावाही वृत्ताकार पाश के अक्ष के किसी बिन्दु (x) पर चुम्बकीय क्षेत्र के लिए व्यंजक व्युत्पन्न कीजिए । इस बिन्दु पर चुम्बकीय क्षेत्र की दिशा किस प्रकार निर्धारित की जाती है ?

अथवा

चित्र में तीन अनन्त लम्बाई के सीधे समानान्तर धारावाही चालक दर्शाए गए हैं। ज्ञात कीजिए:

- (i) चालक 1 पर स्थित बिन्दु A पर कुल चुम्बकीय क्षेत्र का परिमाण तथा दिशा ।
- (ii) चालक 2 पर चुम्बकीय बल ।

Using Biot-Savart law, deduce the expression for the magnetic field at a point (x) on the axis of a circular current carrying loop of radius R. How is the direction of the magnetic field determined at this point?

OR

55/2/1 8

3

3

The figure shows three infinitely long straight parallel current carrying conductors. Find the

- (i) magnitude and direction of the net magnetic field at point A lying on conductor 1,
- (ii) magnetic force on conductor 2.

- 17. (a) रेडियोऐक्टिव क्षय का नियम लिखिए। 'सक्रियता' का SI मात्रक लिखिए।
 - (b) किसी दिए गए रेडियोऐक्टिव तत्त्व में $4\sqrt{2}\times 10^6$ रेडियोऐक्टिव नाभिक हैं। यदि इस नमूने की अर्ध आयु 20 सेकण्ड है, तो 10 सेकण्ड में कितने नाभिक क्षयित होंगे ?

3

3

- (a) State the law of radioactive decay. Write the SI unit of 'activity'.
- (b) There are $4\sqrt{2} \times 10^6$ radioactive nuclei in a given radioactive sample. If the half life of the sample is 20 s, how many nuclei will decay in 10 s?
- 18. (a) विद्युत्-चुम्बकीय तरंगें किस प्रकार उत्पन्न होती हैं ? व्याख्या कीजिए।
 - (b) कोई समतल विद्युत्-चुम्बकीय तरंग किसी माध्यम में धनात्मक z-दिशा के अनुदिश गतिमान है। इस विद्युत्-चुम्बकीय तरंग को दोलायमान विद्युत् और चुम्बकीय क्षेत्रों की दिशाओं को दर्शाते हुए चित्रित कीजिए।
 - (a) How are electromagnetic waves produced? Explain.
 - (b) A plane electromagnetic wave is travelling through a medium along the +ve z-direction. Depict the electromagnetic wave showing the directions of the oscillating electric and magnetic fields.

55/2/1 9 P.T.O.

ac वोल्टता $v = v_0 \sin \omega t$ का कोई स्रोत प्रेरकत्व L के किसी शुद्ध प्रेरक के सिरों से 19. संयोजित है । परिपथ में तात्क्षणिक धारा के लिए व्यंजक व्युत्पन्न कीजिए । यह दर्शाइए कि इस परिपथ में औसत शक्ति क्षय शून्य है।

A source of ac voltage $v = v_0 \sin \omega t$, is connected across a pure inductor of inductance L. Derive the expressions for the instantaneous current in the circuit. Show that average power dissipated in the circuit is zero.

- समान तीव्रता परन्त विभिन्न आवृत्तियों के आपितत विकिरणों के लिए संग्राहक विभव (a) 20. के साथ प्रकाश-विद्युत धारा के विचरण को दर्शाने के लिए ग्राफ़ खींचिए।
 - इस ग्राफ़ से प्रेक्षणों की व्याख्या के लिए आइन्स्टाइन के प्रकाश-विद्युत समीकरण का (b) उपयोग कीजिए ।
 - यदि आवृत्ति को समान रखते हुए आपतित विकिरणों की तीव्रता को परिवर्तित किया (c) जाए, तो आप क्या परिवर्तन देखेंगे ?
 - Draw a plot showing the variation of photoelectric current with (a) collector potential for different frequencies but same intensity of incident radiation.
 - (b) Use Einstein's photoelectric equation to explain the observations from this graph.
 - (c) What change will you observe if intensity of incident radiation is changed but the frequency remains the same?
- उस अवस्था का उल्लेख कीजिए जिसमें किसी चुम्बकीय क्षेत्र B में वेग v से गतिमान 21. (a) कोई आवेशित कण बिना विचलित हए गुज़र जाता है।
 - $10^4\,\mathrm{V}$ विभवान्तर तक त्वरित कोई इलेक्ट्रॉन अपनी गति की दिशा के लम्बवत् (b) $0.04~\mathrm{T}$ के किसी एकसमान चुम्बकीय क्षेत्र में प्रवेश करता है । प्रक्षेप-पथ की वक्रता त्रिज्या परिकलित कीजिए।
 - (a) State the condition under which a charged particle moving with velocity v goes undeflected in a magnetic field B.
 - (b) An electron, after being accelerated through a potential difference of 10⁴ V, enters a uniform magnetic field of 0.04 T, perpendicular to its direction of motion. Calculate the radius of curvature of its trajectory.

10 55/2/1

Get More Learning Materials Here:

3

3

22. चौड़ाई 'a' की किसी पतली झिरी पर, इस झिरी से दूरी D पर स्थित किसी परदे पर विवर्तन पैटर्न उत्पन्न करने के लिए, तरंगदैर्घ्य λ का कोई एकवर्णी प्रकाश अभिलम्बवत् आपतन करता है । प्रासंगिक आरेख की सहायता से, परदे पर उच्चिष्ठ और निम्निष्ठ के लिए शर्तें व्युत्पन्न कीजिए । इन शर्तों का उपयोग यह दर्शाने के लिए कीजिए कि केन्द्रीय उच्चिष्ठ की कोणीय चौड़ाई द्वितीयक उच्चिष्ठ की कोणीय चौड़ाई की दुगुनी होती है ।

3

A monochromatic light of wavelength λ is incident normally on a narrow slit of width 'a' to produce a diffraction pattern on the screen placed at a distance D from the slit. With the help of a relevant diagram, deduce the conditions for obtaining maxima and minima on the screen. Use these conditions to show that angular width of central maximum is twice the angular width of secondary maximum.

खण्ड द SECTION D

- 23. सुनील और उसके माता-पिता अपनी कार से अपने गाँव जा रहे थे। रास्ते में उसकी माताजी ने निचले भवनों की छतों पर धूसर रंग के कुछ पैनल लगे देखे। उन्होंने सुनील से इन पैनलों के बारे में पूछा कि ये क्या हैं। सुनील ने अपनी माताजी को बताया कि ये सौर पैनल हैं।
 - (a) सुनील और उसकी माताजी द्वारा प्रदर्शित मूल्य क्या थे ? प्रत्येक का एक-एक मूल्य लिखिए ।
 - (b) किस प्रकार सौर पैनलों का उपयोग अत्यधिक उपयोगी सिद्ध होगा ?
 - (c) सौर पैनलों में उपयोग होने वाली अर्धचालक युक्ति का नाम लिखिए। आरेख की सहायता से संक्षेप में इस युक्ति की क्रियाविधि की व्याख्या कीजिए।

4

Sunil and his parents were travelling to their village in their car. On the way his mother noticed some grey coloured panels installed on the roof of a low building. She enquired from Sunil what those panels were and Sunil told his mother that those were solar panels.

- (a) What were the values displayed by Sunil and his mother? State one value for each.
- (b) In what way would the use of solar panels prove to be very useful?
- (c) Name the semiconductor device used in solar panels. Briefly explain with the help of a diagram, how this device works.

55/2/1 11 P.T.O.

खण्ड य **SECTION E**

- पोटेन्शियोमीटर का कार्यकारी सिद्धान्त लिखिए । किसी दिए गए 24. (a) (i) पोटेन्शियोमीटर को और अधिक सुग्राही किस प्रकार बनाया जा सकता है ?
 - नीचे दो पोटेन्शियोमीटरों के लिए ग्राफ़ दर्शाए गए हैं । कारण सहित उल्लेख (ii) कीजिए कि इन दो पोटेन्शियोमीटरों A अथवा B में से कौन-सा अधिक सुग्राही है।

समान पदार्थ और समान लम्बाई के दो धातु के तार P1 और P2 जिनके (b) अनुप्रस्थ-काट के क्षेत्रफल \mathbf{A}_1 और \mathbf{A}_2 हैं, एक-दूसरे से जुड़े हैं और वि.वा.बल के किसी स्रोत से संयोजित हैं। इन दोनों तारों से मुक्त इलेक्ट्रॉनों के अपवाह वेगों का अनुपात ज्ञात कीजिए जबकि ये तार (i) श्रेणीक्रम में, और (ii) पार्श्व (समांतर क्रम) में संयोजित हैं।

अथवा

- किसी संधारित्र की धारिता की परिभाषा दीजिए । निर्वात में किसी समान्तर पट्टिका (a) संधारित्र की धारिता के लिए, पट्टिकाओं के क्षेत्रफल A तथा पट्टिकाओं के बीच पृथकन d के पदों में व्यंजक व्युत्पन्न कीजिए।
- परावैद्युतांक K के पदार्थ के किसी स्लैब का उतना ही क्षेत्रफल है, जितना किसी (b) समान्तर पट्टिका संधारित्र की पट्टिकाओं का है परन्तु उसकी मोटाई $\frac{3d}{4}$ है । परावैद्युतांक के साथ धारिता और बिना परावैद्युतांक के धारिता का अनुपात ज्ञात कीजिए।

5

5

55/2/1

- (a) (i) State the principle on which a potentiometer works. How can a given potentiometer be made more sensitive?
 - (ii) In the graph shown below for two potentiometers, state with reason which of the two potentiometers, A or B, is more sensitive.

(b) Two metallic wires, P_1 and P_2 of the same material and same length but different cross-sectional areas, A_1 and A_2 are joined together and connected to a source of emf. Find the ratio of the drift velocities of free electrons in the two wires when they are connected (i) in series, and (ii) in parallel.

OR

- (a) Define the capacitance of a capacitor. Obtain the expression for the capacitance of a parallel plate capacitor in vacuum in terms of plate area A and separation d between the plates.
- (b) A slab of material of dielectric constant K has the same area as the plates of a parallel plate capacitor but has a thickness $\frac{3d}{4}$. Find the ratio of the capacitance with dielectric inside it to its capacitance without the dielectric.

55/2/1 13 P.T.O.

- फैराडे का विद्युत्-चुम्बकीय प्रेरण का नियम लिखिए। **25.** (a)
 - चित्र में दर्शाए अनुसार 12 cm त्रिज्या और 8·5 Ω प्रतिरोध के किसी वृत्ताकार पाश से (b) गुज़रने वाले चुम्बकीय क्षेत्र में समय के साथ परिवर्तन होता है । चुम्बकीय क्षेत्र पाश के समतल के लम्बवत है। पाश में प्रेरित धारा परिकलित कीजिए और समय के फलन के रूप में इसे आलेखित कीजिए।

यह दर्शाइए कि लेंज़ का नियम ऊर्जा संरक्षण का निष्कर्ष है। (c)

अथवा

- उपयुक्त आरेख की सहायता से किसी उच्चायी ट्रांसफ़ॉर्मर के कार्यकारी सिद्धान्त का (a) वर्णन कीजिए । प्राथमिक और द्वितीयक कुण्डलियों में फेरों की संख्या और निवेशी व निर्गत परिपथों में धाराओं के पदों में निवेशी और निर्गत वोल्टताओं के बीच संबंध प्राप्त कीजिए।
- 90% दक्षता के किसी उच्चायी ट्रांसफ़ॉर्मर के लिए निवेशी धारा $15~\mathrm{A}$ और निवेशी (b) वोल्टता 100 V दी गयी है। यदि निर्गत धारा 3 A है, तो निर्गत शक्ति और द्वितीयक में वोल्टता ज्ञात कीजिए।

55/2/1 14

- (a) State Faraday's law of electromagnetic induction.
- (b) The magnetic field through a circular loop of wire 12 cm in radius and 8.5Ω resistance, changes with time as shown in the figure. The magnetic field is perpendicular to the plane of the loop. Calculate the induced current in the loop and plot it as a function of time.

(c) Show that Lenz's law is a consequence of conservation of energy.

OR

- (a) Describe, with the help of a suitable diagram, the working principle of a step-up transformer. Obtain the relation between input and output voltages in terms of the number of turns of primary and secondary windings and the currents in the input and output circuits.
- (b) Given the input current 15 A and the input voltage of 100 V for a step-up transformer having 90% efficiency, find the output power and the voltage in the secondary if the output current is 3 A.
- वक्रता त्रिज्या R के किसी उत्तल गोलीय पृष्ठ, जो अपवर्तनांक n_1 और n_2 $(n_2 > n_1)$ 26. (a) के दो माध्यमों को पृथक् करता है, के मुख्य अक्ष पर कोई बिन्दुकित बिम्ब स्थित है। विरल से सघन माध्यम में उत्तल गोलीय पृष्ठ पर अपवर्तन के लिए किरण आरेख खींचिए और बिम्ब दूरी (u), प्रतिबिम्ब दूरी (v) तथा वक्रता त्रिज्या (R) के बीच संबंध व्युत्पन्न कीजिए।
 - किसी अभिसारी लेंस की वायु में फोकस दूरी 20 cm है। यह लेंस अपवर्तनांक (b) 1.6 के पदार्थ का बना है। यदि यह किसी द्रव जिसका अपवर्तनांक 1.3 है, में डूबा है, तो इसकी नयी फोकस द्री ज्ञात कीजिए।

अथवा

55/2/1 15 P.T.O.

- (a) किसी काँच के प्रिज़्म से गुज़रने वाले प्रकाश के अपवर्तन के लिए किरण आरेख खींचिए और अत: प्रिज़्म के अपवर्तनांक μ, प्रिज़्म कोण और न्यूनतम विचलन कोण के बीच संबंध प्राप्त कीजिए।
- (b) उस प्रकाश की किरण के लिए आपतन कोण का मान निर्धारित कीजिए, जो अपवर्तनांक $\mu_1 = \sqrt{2}$ के माध्यम से किसी अपवर्तनांक $\mu_2 = 1$ के माध्यम में इस प्रकार गमन करती है कि यह पृथकन करने वाले पृष्ठ को ठीक-ठीक स्पर्श करती है।
- (a) A point object is placed on the principal axis of a convex spherical surface of radius of curvature R, which separates the two media of refractive indices n_1 and n_2 ($n_2 > n_1$). Draw the ray diagram and deduce the relation between the object distance (u), image distance (v) and the radius of curvature (R) for refraction to take place at the convex spherical surface from rarer to denser medium.
- (b) A converging lens has a focal length of 20 cm in air. It is made of a material of refractive index 1.6. If it is immersed in a liquid of refractive index 1.3, find its new focal length.

OR

- (a) Draw the ray diagram showing refraction of light through a glass prism and hence obtain the relation between the refractive index μ of the prism, angle of prism and angle of minimum deviation.
- (b) Determine the value of the angle of incidence for a ray of light travelling from a medium of refractive index $\mu_1 = \sqrt{2}$ into the medium of refractive index $\mu_2 = 1$, so that it just grazes along the surface of separation.

55/2/1 16

MARKING SCHEME

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
	SECTION A		TVICE INS
Set1 Q1	i) $V_A > V_B$ ii) $V_A < V_B$	1/ ₂ 1/ ₂	1
Set1 Q2	Formula 1		
	$c = \frac{1}{\sqrt{\mu\epsilon}}$ [Alternatively, $c = \frac{1}{\sqrt{\mu_0 \mu_r \epsilon_0 \epsilon_r}}$]	1	1
Set1 Q3	For writing yes Justification 1/2 1/2		
	Yes 1	1/2	
	Justification: $m \alpha \frac{1}{f_0 f_e}$ And focal length depends on colour/ μ .	1/2	1
Set1 Q4	Logic Symbol ½ Truth Table ½		
	A B Y O O O O 1 1 1 0 1 1 1 1	1/2	
	(a) (b)	/2	1
Set1 Q5	Writing Yes Reason Yes 1/2 Yes		
	Reason - $v_{blue} > v_{red}$ [Alternatively: Energy of blue light photon is greater than energy of red light photon.]	1/2 1/2	1
	SECTION B		
Set1 Q6	Conversion of phase difference to path difference $\frac{1}{2}$ Formula for Intensity $\frac{1}{2}$ Finding intensity values $(\frac{1}{2} + \frac{1}{2})$		

	Path difference $\lambda/_4 \Rightarrow$ phas	e difference π/o		٦	
	Path difference $\frac{\lambda}{3}$ \Rightarrow phase			1/2	
		$\cos^2\left(\frac{\emptyset}{2}\right)$		1/2	
	i) $I_1 = 4I_0 X \frac{1}{2} = 2I_0$	\ /		1/2	
	ii) $I_2 = 4I_0 X \frac{1}{4} = I_0$			1/2	2
Set1 Q7	Any two differences	(1+1)		
	Any two				
	Intrinsic	Extrinsic			
	i) Pure semiconductor	i) Doped or impure		4 . 4	2
	$ii) n_e = n_h$	ii) $n_e \neq n_h$		1+1	
	iii) Low conductivity at room temperature	iii)Higher conductivity at room temperature			
	iv)Conductivity depends on temperature	iv) Conductivity does not depend significantly on temperature.			
Set1 Q8	Distinguishing the two node One example of each	S $(\frac{1}{2} + \frac{1}{2})$ $(\frac{1}{2} + \frac{1}{2})$			
	In point-to-point communica place over a link between a s receiver.			1/2	
	In the broadcast mode, there corresponding to a single tran	_	ers	1/2	
	Example: Point-to-point:	telephone (any other)		1/2	
	Broadcast: T	.V., Radio (any other)		1/2	2
Set1 Q9	Effect on brightness Explanation	1 1			
	Brightness decreases			1	
	Explanation:- Self inductance of the impedance of the circuit and (Even if student just writes self mark.)	l hence current decreases.		1	2
·	•			•	

,			
Set1 Q10 Formula	1/2		
Image distance for $ u \le f + x $	1/2		
Image distance where $ x \le f $	1		
$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ (f is negative)		1/2	
$U = -f \Longrightarrow \frac{1}{v} = 0 \Longrightarrow v = \infty$		1/2	
$U = -2f \Longrightarrow \frac{1}{v} = \frac{-1}{2f} \Longrightarrow v = -2f$		1/2	
Hence if $-2f < u < -f \Rightarrow -2f < v < \infty$		1/2	2
[Alternatively			
$2f > u > f$ $-\frac{1}{2f} > -\frac{1}{u} > -\frac{1}{f}$ $\frac{1}{f} - \frac{1}{2f} > \frac{1}{f} - \frac{1}{u} > \frac{1}{f} - \frac{1}{f}$			
$\left -\frac{1}{-} \right > -\frac{1}{-} > -\frac{1}{-}$		1/2	
$\begin{vmatrix} 2f & u & f \\ 1 & 1 & 1 & 1 & 1 \end{vmatrix}$			
$\left \frac{1}{f} - \frac{1}{2f} > \frac{1}{f} - \frac{1}{2f} > \frac{1}{f} - \frac{1}{f} \right $		1/2	
$\left \frac{1}{2f} < \frac{1}{V} < 0 \right $		1/2	
2f < V <∝]		1/2	2
OR		72	-
(a) Formula for magnification	1/2		
Conditions for large magnification	1/2		
(b) Any two reasons	1/2 + 1/2		
(a) $m = -\frac{f_0}{f_e}$		1/2	
By increasing f_0 / decreasing f_e		1/2	
(b) Any two			
(i) No chromatic aberration.			
(ii) No spherical aberration.			
(iii) Mechanical advantage – low	weight, easier to		
support.		1/- 1/-	2
(iv) Mirrors are easy to prepare.		$\frac{1}{2} + \frac{1}{2}$	2
(v) More economical			
SECTION C			
Set1 O11	4		
a) Definition	1		
Explanation b) Determination of modulation index	1/ ₂ 1/ ₂		
Side bands	$(\frac{1}{2} + \frac{1}{2})$		
	(, - · · · - /	1	
a) $\mu = \frac{A_m}{A_c}$		1	
$\mu \leq 1$ to avoid distortion of signal.		1/2	

		T	
	b) $\mu = \frac{10V}{10V} = 1$ $v_c - v_m = (1000 - 10)kHz = 990kHz$ $v_c + v_m = (1000 + 10)kHz = 1010kHz$	1/ ₂ 1/ ₂ 1/ ₂	3
Set1 Q12	Bohr quantum condition 1/2 Expression for Time period 21/2		
	$mvr = \frac{nh}{2\pi}$ Bohr postulate	1/2	
	Also, $\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}$	1/2	
	$\Leftrightarrow mv^2r = \frac{e}{4\pi\epsilon_0}$	1/2	
	$mvr = \frac{nh}{2\pi} \qquad \text{Bohr postulate}$ $\text{Also, } \frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}$ $\Leftrightarrow mv^2r = \frac{e^2}{4\pi\epsilon_0}$ $\therefore v = \frac{e^2}{4\pi\epsilon_0} X \frac{2\pi}{nh} = \frac{e^2}{2\epsilon_0 nh}$	1/2	
	$T = \frac{2\pi r}{v} = \frac{2\pi m v r}{m v^2}$ $= \frac{2\pi \left(\frac{nh}{2\pi}\right)}{m\left(\frac{e^2}{2\epsilon_0 nh}\right)^2}$	1/2	
	$= \frac{4n^3h^3\epsilon_0^2}{me^4}$ (Also accept if the student calculates T by obtaining expressions for both v and r .)	1/2	3
Set1 Q13	Expression for electric field $1\frac{1}{2}$ Expression for potential $\frac{1}{2}$ Plot of graph (E $V_s r$) $\frac{1}{2}$ Plot of graph (V $V_s r$) $\frac{1}{2}$		
	Surface charge Gaussian surface density σ		
	By Gauss theorem $ \oint \overrightarrow{E}.d\overrightarrow{s} = \frac{q}{E_0} $	1/2 1/2	
	q =0 in interval 0 <x<r $\Rightarrow E = 0$ $E = -\frac{dV}{dr}$</x<r 	1/ ₂ 1/ ₂	

In loop ACDFA		
$I = \frac{12 - 6}{(1 + 2)} = 2A$	1	
V = V		
$V_{AF} = V_{BE}$ $\Rightarrow 6 + 2 = 6 + V_{c}$	1/2	
$\Rightarrow V_c = 2V$	1/2	
Charge $Q=CV_c=5\mu F X 2V = 10\mu C$	1	3
Set1 Q15 Gauss's theorm ½		
Diagram ½		
Electric field between the cylinders 1 Electric field outside the cylinders 1		
, , , , , , , , , , , , , , , , , , ,		
As Gauss's Law states $f \rightarrow g$		
$\oint \vec{E} \cdot \vec{dS} = \frac{q}{\epsilon_0}$	1/2	
$+\lambda_1$ $-\lambda_2$		
	1/2	
Gaussian surface		
□ + + □ ≪—Gaussian □ + □ + □ surface		
	1/	
(i) $\oint \overrightarrow{E_1} \cdot \overrightarrow{ds} = \frac{\lambda_1 l}{\epsilon_0}$	1/2	
$\Rightarrow \overrightarrow{E_1} = \frac{\lambda_1}{2\pi\epsilon_0 r_1} \widehat{r_1}$	1/2	
$ = \frac{1}{2\pi\epsilon_0 r_1} r_1$		
$(\cdots) f \overrightarrow{F} \xrightarrow{l} (\lambda_1 - \lambda_2) l$	1/2	
$(11) \oint E_2 \cdot ds = \frac{1}{\epsilon_0}$	72	
$(ii) \oint \overrightarrow{E_2} \cdot \overrightarrow{ds} = \frac{(\lambda_1 - \lambda_2)l}{\epsilon_0}$ $\Rightarrow \overrightarrow{E_2} = \frac{(\lambda_1 - \lambda_2)}{2\pi\epsilon_0 r_2} \widehat{r_2}$	1/2	3
Set1 016		
Biot Savart's Law ½ mark		
Deduction of Expression 2 marks Direction of magnetic field ½ mark		

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \ I \frac{\overrightarrow{dl} \times \overrightarrow{r}}{r^3}$	

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \operatorname{I} \frac{\overrightarrow{dl} \times \overrightarrow{r}}{r^3}$$

$$[\operatorname{OR} dB = \frac{\mu_0}{4\pi} \frac{Idl}{r^2}]$$

Here
$$r^2 = x^2 + R^2$$

$$dB = \frac{\mu_0}{4\pi} \frac{I dl}{x^2 + R^2}$$

$$\sum dB_{\perp}=0$$

$$dB_x = dB \cos \theta$$
 where $\cos \theta = \frac{R}{(x^2 + R^2)^{1/2}}$

$$dB_x = \frac{\mu_{0 Idl}}{4\pi}$$
 $\frac{R}{(x^2 + R^2)^2}$

$$\vec{B} = \int dB_x \, \hat{i} = \frac{\mu_{0IR}^2}{2(x^2 + R^2)^{3/2}} \, \hat{i}$$

Direction- Can be determined by right hand thumb rule. [Alternatively: By using vector form of Biot Savart law]

OR

- (i) Magnitude of magnetic field at A 1 Direction of magnetic field at A 1/2 Magnitude of magnetic force on conductor 2 1 Direction of magnitude force on conductor 2 1/2
 - (i) $B_2 = \frac{\mu_0}{4\pi} \frac{2(3I)}{r} = \frac{\mu_0}{4\pi} \left(\frac{6I}{r}\right)$ into the plane of the paper/ (\otimes)

1/2

1/2

1/2

1/2

1/2

1/2

3

1/2

1/2

$B_3 = \frac{\mu_0}{4\pi} \frac{2(4l)}{3r} = \frac{\mu_0}{4\pi} \left(\frac{8l}{3r}\right) \text{out of the plane of the paper/(O)}.$ $B_A = B_2 - B_3 \text{ into the paper.}$ $= \frac{\mu_0}{4\pi} \left(\frac{101}{3r}\right) \text{ into the paper.} (\otimes)$ $(ii) F_{21} = \frac{\mu_0}{4\pi} \frac{2(2 3 /4)}{2r} \text{ away from wire 1 (/towards 3)}$ $F_{22} = \frac{\mu_0}{4\pi} \frac{2(3 3 /4)}{2r} \text{ away from wire 3 (towards 1)}$ $F_{net} = F_{23} - F_{21} \text{ towards wire 1}$ $= \frac{\mu_0}{4\pi} \frac{6(0)^2}{r} \text{ towards wire 1}$ $Setl Q17$ $Statement - \frac{1}{8.1 \text{Unit}} - \frac{1}{1} \text{ (a) Statement : Rate of decay of a given radioactive sample is directly propotional to the total number of undecayed nuclei present in the sample. [Alternatively: -\frac{dA}{dt} \propto N] Unit- becquerel(Bq) (b) N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2} \Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2} = 4 \times 10^6 \text{ nuclei} (a) Explanation of production of em waves \frac{11/2}{2} (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each other, they then propagate in space.$				
paper/(O). $B_A = B_2 - B_3$ into the paper. $\frac{\mu_0}{24\pi}\left(\frac{10I}{3r}\right)$ into the paper. $\frac{\mu_0}{24\pi}\left(\frac{10I}{3r}\right)$ into the paper. $\frac{\mu_0}{24\pi}\left(\frac{10I}{3r}\right)$ into the paper. $\frac{\mu_0}{24\pi}\left(\frac{10I}{3r}\right)$ into the paper. $\frac{\mu_0}{24\pi}\left(\frac{2I(3I)}{4\pi}\right)$ away from wire 1 (/towards 3) $\frac{\mu_2}{2I} = \frac{\mu_0}{4\pi}\frac{2I(3I)}{2I}$ away from wire 3 (towards 1) $\frac{\mu_0}{2I} = \frac{\mu_0}{4\pi}\frac{6I(I)^2}{2I}$ towards wire 1 $\frac{\mu_0}{2I}=\frac{\mu_0}{4\pi}\frac{6I(I)^2}{2I}$ towards wire 1 $\frac{\mu_0}{2I}=\frac{\mu_0}{2I}=\frac{6I(I)^2}{2I}=\frac{\mu_0}{2I}=\frac{I}{2I}$			1/2	
paper/(O). $B_A = B_2 - B_3$ into the paper. $= \frac{\mu_0}{4\pi} \left(\frac{10I}{3r}\right)$ into the paper. $= \frac{\mu_0}{4\pi} \left(\frac{10I}{3r}\right)$ into the paper. $= \frac{\mu_0}{4\pi} \left(\frac{10I}{3r}\right)$ into the paper. $= \frac{\mu_0}{4\pi} \left(\frac{2I(3I)}{r}\right)$ away from wire 1 (/towards 3) $= \frac{\mu_0}{2\pi} \left(\frac{2I(3I)}{2r}\right)$ away from wire 3 (towards 1) $= \frac{\mu_0}{4\pi} \left(\frac{6(I)^2}{2r}\right)$ towards wire 1 $= \frac{\mu_0}{4\pi} \left(\frac{6(I)^2}{2r}\right)$ towards wire 1 $= \frac{\mu_0}{4\pi} \left(\frac{6(I)^2}{r}\right)$ (a) Statement: Rate of decay of a given radioactive sample is directly propotional to the total number of undecayed nuclei present in the sample. $= \frac{I}{4\pi} \left(\frac{I}{4\pi}\right) \left(\frac{I}{4\pi}\right) \left(\frac{I}{4\pi}\right)$ Unit-becquerel(Bq) $= \frac{I}{4\pi} \left(\frac{I}{4\pi}\right) \left(\frac{I}{4\pi}\right)$		$B_3 = \frac{\mu_0}{4} \frac{2(4I)}{2} = \frac{\mu_0}{4} \left(\frac{8I}{2}\right)$ out of the plane of the		
$B_A = B_2 - B_3 \text{ into the paper.}$ $= \frac{\mu_0}{4\pi} \left(\frac{10I}{3r} \right) \text{ into the paper.}(\otimes)$ (ii) $F_{21} = \frac{\mu_0}{4\pi} \frac{2I(3I)}{r}$ away from wire I (/towards 3) $F_{23} = \frac{\mu_0}{4\pi} \frac{2(3I)(4I)}{2r} \text{ away from wire 3 (towards 1)}$ $F_{net} = F_{23} - F_{21} \text{ towards wire 1}$ $= \frac{\mu_0}{4\pi} \frac{6(I)^2}{r} \text{ towards wire 1}$ Set I Q17 $Statement - \frac{1}{5} \text{ It into } \frac{1}{5} \text{ towards wire 1}$ (a) Statement : Rate of decay of a given radioactive sample is directly propotional to the total number of undecayed nuclei present in the sample. $[Alternatively: -\frac{dN}{dt} \propto N]$ Unit- becquerel(Bq) $(b) N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^6 \text{ nuclei}$ Set I Q18 $(a) \text{ Explanation of production of em waves} \qquad \frac{11}{1} \text{ 1} \text{ 1} \text{ 1} \text{ 1} \text{ 1} \text{ 2} \text{ 2} \text{ 3}$ $(a) An oscillating charge produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each$		111 01 111 (01)	1/2	
$=\frac{\mu_0}{4\pi} \left(\frac{3r}{3r}\right) \text{ into the paper.}(\otimes)$ (ii) $F_{21} = \frac{\mu_0}{4\pi} \frac{2l(3l)}{r}$ away from wire1 (/towards 3) $F_{23} = \frac{\mu_0}{4\pi} \frac{2(3l)(4l)}{2r} \text{ away from wire 3 (towards 1)}$ $F_{net} = F_{23} - F_{21} \text{ towards wire 1}$ $=\frac{\mu_0}{4\pi} \frac{6(l)^2}{r} \text{ towards wire 1}$ Set1 Q17 Statement -		$B_A = B_2 - B_3$ into the paper.	, -	
(ii) $F_{21} = \frac{\mu_0}{4\pi} \frac{2I(3I)}{r}$ away from wirel (/towards 3) $F_{23} = \frac{\mu_0}{4\pi} \frac{2(3I)(4I)}{2r} \text{ away from wire 3 (towards 1)}$ $F_{\text{net}} = F_{23} - F_{21} \text{ towards wire 1}$ $= \frac{\mu_0}{4\pi} \frac{6(I)^2}{r} \text{ towards wire 1}$ Set1 Q17 Statement - 1		$=\frac{\mu_0}{2}\left(\frac{10I}{10I}\right)$ into the paper (\otimes)	1/2	
$F_{23} = \frac{\mu_0}{4\pi} \frac{2(3I)(4I)}{2r} \text{ away from wire 3 (towards 1)}$ $F_{\text{net}} = F_{23} - F_{21} \text{ towards wire 1}$ $= \frac{\mu_0}{4\pi} \frac{6(I)^2}{r} \text{ towards wire 1}$ $= \frac{\mu_0}{4\pi} \frac{6(I)^2}{r} \text{ towards wire 1}$ Set1 Q17 Statement -		$4\pi \left(3r\right)$		
$F_{23} = \frac{\mu_0}{4\pi} \frac{2(3I)(4I)}{2r} \text{ away from wire 3 (towards 1)}$ $F_{\text{net}} = F_{23} - F_{21} \text{ towards wire 1}$ $= \frac{\mu_0}{4\pi} \frac{6(I)^2}{r} \text{ towards wire 1}$ $= \frac{\mu_0}{4\pi} \frac{6(I)^2}{r} \text{ towards wire 1}$ Set1 Q17 Statement -		(ii) $F_{21} = \frac{\mu_0}{4\pi} \frac{2I(3I)}{g}$ away from wire1 (/towards 3)		
$F_{\text{net}} = F_{23} - F_{21} \text{ towards wire 1}$ $= \frac{\mu_0}{4\pi} \frac{6(l)^2}{r} \text{ towards wire 1}$ Set 1 Q17 Statement -		2(0)(1)	1/2	3
Set1 Q17		$F_{23} = \frac{\mu_0}{4\pi} \frac{2(31)(41)}{2r}$ away from wire 3 (towards 1)		
Set1 Q17 Statement - 1 S.I Unit - 1/2 Formula- Calculation of number of nuclei 1 (a) Statement : Rate of decay of a given radioactive sample is directly propotional to the total number of undecayed nuclei present in the sample. [Alternatively: $-\frac{dN}{dt} \propto N$] Unit- becquerel(Bq) (b) $N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^6$ nuclei (a) Explanation of production of em waves $\frac{1}{2}$ (b) Depiction of em waves $\frac{1}{2}$ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each		$F_{\text{net}} = F_{23} - F_{21}$ towards wire1		
Set1 Q17 Statement - 1 S.I Unit - 1/2 Formula- Calculation of number of nuclei 1 (a) Statement : Rate of decay of a given radioactive sample is directly propotional to the total number of undecayed nuclei present in the sample. [Alternatively: $-\frac{dN}{dt} \propto N$] Unit- becquerel(Bq) (b) $N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^6$ nuclei (a) Explanation of production of em waves $\frac{1}{2}$ (b) Depiction of em waves $\frac{1}{2}$ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each		6(1)2		
Set1 Q17 Statement - 1 S.I Unit - 1/2 Formula- Calculation of number of nuclei 1 (a) Statement : Rate of decay of a given radioactive sample is directly propotional to the total number of undecayed nuclei present in the sample. [Alternatively: $-\frac{dN}{dt} \propto N$] Unit- becquerel(Bq) (b) $N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^6$ nuclei (a) Explanation of production of em waves $\frac{1}{2}$ (b) Depiction of em waves $\frac{1}{2}$ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each		$=\frac{\mu_0}{4\pi} \frac{\delta(1)}{r}$ towards wire 1		
S.I Unit – $\frac{1}{1}$ Formula- $\frac{1}{2}$ Calculation of number of nuclei $\frac{1}{2}$ (a) Statement: Rate of decay of a given radioactive sample is directly propotional to the total number of undecayed nuclei present in the sample. [Alternatively: $-\frac{dN}{dt} \propto N$] Unit- becquerel(Bq) $\frac{dN}{dt} = \frac{1}{2}$ \frac	Set1 Q17			
Calculation of number of nuclei (a) Statement: Rate of decay of a given radioactive sample is directly propotional to the total number of undecayed nuclei present in the sample. [Alternatively: $-\frac{dN}{dt} \propto N$] Unit- becquerel(Bq) (b) $N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^6$ nuclei (a) Explanation of production of em waves $\frac{11}{2}$ (b) Depiction of em waves $\frac{11}{2}$ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each				
(a) Statement: Rate of decay of a given radioactive sample is directly propotional to the total number of undecayed nuclei present in the sample. [Alternatively: $-\frac{dN}{dt} \propto N$] Unit- becquerel(Bq) (b) $N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^6$ nuclei (a) Explanation of production of em waves $\frac{1}{2}$ (b) Depiction of em waves $\frac{1}{2}$ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each				
directly propotional to the total number of undecayed nuclei present in the sample. [Alternatively: $-\frac{dN}{dt} \propto N$] Unit- becquerel(Bq) (b) $N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^6$ nuclei Set1 Q18 (a) Explanation of production of em waves $\frac{11}{2}$ (b) Depiction of em waves $\frac{11}{2}$ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each				
nuclei present in the sample. [Alternatively: $-\frac{dN}{dt} \propto N$] Unit- becquerel(Bq) (b) $N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^6$ nuclei (a) Explanation of production of em waves 1½ (b) Depiction of em waves 1½ (c) Depiction of em waves 1½ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each			1	
[Alternatively: $-\frac{dN}{dt} \propto N$] Unit- becquerel(Bq) (b) $N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^6$ nuclei 3 Set1 Q18 (a) Explanation of production of em waves (b) Depiction of em waves (b) Depiction of em waves (c) Depc			1	
Unit- becquerel(Bq) $(b) N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^6 \text{ nuclei}$ Set1 Q18 (a) Explanation of production of em waves 1½ (b) Depiction of em waves 1½ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each 1½				
(b) $N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^6$ nuclei (a) Explanation of production of em waves (b) Depiction of em waves (b) Depiction of em waves (c) Depiction of em waves (d) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each		at		
$n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^{6} \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^{6} \text{ nuclei}$ $(a) Explanation of production of em waves 11/2 (b) Depiction of em waves 11/2 (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each$		Unit- becquerel(Bq)	1/2	
$n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^{6} \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^{6} \text{ nuclei}$ (a) Explanation of production of em waves 1½ (b) Depiction of em waves 1½ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each		N Z1\N		
$n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow N = 4\sqrt{2} \times 10^{6} \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^{6} \text{ nuclei}$ (a) Explanation of production of em waves 1½ (b) Depiction of em waves 1½ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each		(b) $N = N_0 e^{-\lambda t} / \frac{N}{N_0} = (\frac{1}{2})^{N_0}$	1/2	
Set1 Q18 $\Rightarrow N = 4\sqrt{2} \times 10^6 \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^6 \text{ nuclei}$ (a) Explanation of production of em waves $1\frac{1}{2}$ (b) Depiction of em waves $1\frac{1}{2}$ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each			17	
= 4× 10 ⁶ nuclei (a) Explanation of production of em waves 1½ (b) Depiction of em waves 1½ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each		$\Pi = \frac{1}{T_{1/2}} = \frac{1}{20} = \frac{1}{2}$	7/2	
= 4× 10 ⁶ nuclei (a) Explanation of production of em waves 1½ (b) Depiction of em waves 1½ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each		$(1)^{1/2}$	1/2	3
Set1 Q18 (a) Explanation of production of em waves 1½ (b) Depiction of em waves 1½ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each		(2)		
(a) Explanation of production of em waves 1½ (b) Depiction of em waves 1½ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each		$=4\times10^6$ nuclei		
(a) Explanation of production of em waves 1½ (b) Depiction of em waves 1½ (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each	Set1 O18			
(a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each	2002 Q10	` ' - *		
in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each				
in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each				
Thus, oscillating electric and magnetic fields generate each				
	1		1½	

	[Alternatively, if a student writes		
	Electromagnetic waves are produced by oscillating electric		
	and magnetic fields / oscillating charges produce em waves.		
	Award 1 mark]		
	x •		
	Electric field OR βfield		
	EM waves		
	$A \rightarrow A \rightarrow$		
	/VIIII		
	₩ B	11/2	3
	Magnetic field or E field		
Set1 Q19	Derivation of instantaneous current 2		
	Derivation of instantaneous current Derivation of average power dissipated 1		
	Given $V = V_0 \sin wt$ $V = L \frac{di}{dt} \Rightarrow di = \frac{V}{L} dt$		
	$V = L \frac{di}{dt} \Rightarrow di = \frac{V}{dt}$		
	$\int_{0}^{\infty} dt dt dt = L^{\alpha \alpha}$	1/2	
	L		
	$v = v_0 \sin wt$	17	
	$\therefore di = \frac{V_0}{L} \sin wt \ dt$	1/2	
	Integrating $i = -\frac{V_0}{wL}\cos wt$	17	
	V _o	1/2	
		1/2	
	WL V_0	72	
	where $I_0 = \frac{V_0}{wL}$		
	Average power		
	$\int_{\mathbf{f}}^{T}$		
	$P_{av} = \int vidt$	1/2	
	$P_{av} = \int_{0}^{T} vidt$ $= \frac{-V_0^2}{wL} \int_{0}^{T} \sin wt \cos wt dt$	/ 4	
	$\left[-\frac{-V_0^2}{T}\right]^T \sin wt \cos wt dt$		
	$\int_{0}^{\infty} J_0 \sin w t \cos w t dt$		
	$= \frac{-V_0^2}{2wL} \int_0^T \sin(2wt) dt$		
	2wL J0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
	=0	1/2	3
		· -	
L			

Set1 Q20	a) Graph of photo current vs collector potential for different frequencies 1 b) Einstein's photo electric equation ½ Explanation of graph ½ c) Graph of photocurrent with collector potential for different intensities 1		
	Photoelectric current $\nu_3 > \nu_2 > \nu_1$ Saturation current $-V_{03}$ $-V_{03}$ Retarding potential	1	
	(b) According to Einstein's photoelectric equation $K_{max} = hv - \emptyset_0$ If V_0 is stopping potential then $eV_0 = hv - \emptyset$ Thus for different value of frequency(v) there will be a different value of cut off potential V_0 .	1/2	
	Stopping potential Stopping potential Collector plate \longrightarrow	1	3
Set1 Q21	(a) Condition for charge going undeflected (b) Formula for radius Calculation of radius 1½ 1½ 1/2		
	(a) The force experienced $\vec{F} = q(\vec{v} \ X \ \vec{B})$ The charge will go undeflected when \vec{v} is parallel or	1/2	

	antiparallel to $\vec{B} : \vec{F} = 0$. [Alternatively,	1/2	
	If \vec{v} makes an angle of 0^0 or 180^0 with \vec{B} .]		
	(b) The radius of electron		
	$eV = \frac{1}{2}mv^2$ $\frac{mv^2}{r} = qvB$	1/2	
	$\frac{mv^2}{r} = qvB$	1/2	
	$\therefore r = \frac{1}{B} \sqrt{\frac{2mV}{e}}$	1/2	
	$= \left[\sqrt{\frac{2 \times 9.1 \times 10^{-31} \times 10^4}{1.6 \times 10^{-19}}} \times \frac{1}{0.04} \right] m$		
	$= 8.4 \times 10^{-3} m$	1/2	3
Set1 Q22	Diagram Path Difference Condition for minima Condition for maxima Width of central maxima Width of secondary maxima $\frac{1}{2}$ To P	1/2	
	The path difference $NP - LP = NQ$ = $a \sin \theta \approx a\theta$ By dividing the slit into an appropriate number of parts, we find that points P for which i) $\theta = \frac{n\lambda}{a}$ are points of minima. ii) $\theta = \left(n + \frac{1}{2}\right)\frac{\lambda}{a}$ are points of maxima	1/2 1/2 1/2	

	Angular width of central maxima, $\theta = \theta_1 - \theta_{-1}$ $= \frac{\lambda}{a} - \left(-\frac{\lambda}{a}\right)$ $\theta = \frac{2\lambda}{a}$ Angular width of secondary maxima = $\theta_2 - \theta_1$	1/2	
	$= \frac{2\lambda}{a} - \frac{\lambda}{a} = \frac{\lambda}{a}$ $= \frac{1}{2}$ X Angular width of central maxima	1/2	3
Set1 Q23	Values displayed Usefulness of solar panels Name of semiconductor device Diagram of the device Value displayed by mother: Inquisitive / scientific temperament / wants to learn / any other. Value displayed by Sunil: Knowledgeable / helpful/ considerate b) Provide clean / green energy Reduces dependence on fossil fuels, Environment friendly energy source. c) Solar Cell (a) Metallised finger electrode Metallised finger electrode (b) (full marks for any one figure out of a &b)	1 1 1/ ₂ 1/ ₂	
	Working: When light falls on the device the solar cell generates an emf.	1/2	4

Set1 Q24	() D. 11 ()		
Sett Q24	a) (i) Principle of potentiometer 1		
	How to increase sensitivity ½		
	(ii) Name of potentiometer ½		
	Reason ½		
	b) Formula ½		
	(i) Ratio of drift velocities in series 1		
	(ii) Ratio of drift velocities in parallel 1		
	a) (i) The potential difference across any length of wire is		
	directly proportional to the length provided current and		
	area of cross section are constant i.e., $E(l) = \phi l$ where	1	
	ϕ is the potential drop per unit length.	-	
	φ is the potential grop per unit length.		
	It can be made more sensitive by decreasing current in		
	the main circuit /decreasing potential gradient /	1/2	
	increasing resistance put in series with the potentiometer		
	wire.		
	ii) Potentiometer B	1/2	
	Has smaller value of $V/_{l}$ (slope / potential gradient).	1/2	
	γιων στο γιων στο γία (στο βιο για στο γία στο γία (στο βιο για στο γία στ		
	b) In series, the current remains the same.	1/2	
	P_1 I P_2		
	• 1		
	\leftarrow \vee \vee		
	·	1/2	
	$I = neA_1V_{d1} = neA_2V_{d2}$		
	$\therefore \frac{V_{d1}}{V_{d2}} = \frac{A_2}{A_1}$	1/2	
	In parallel potential difference is same but currents are different.		
	$V = I_1 R_1 = neA_1 V_{d1} \frac{\varrho l}{A_1} = ne\varrho V_{d1} l$	1/2	
	Similarly, $V = I_2 R_2 = ne\varrho V_{d2} l$		
	$I_1R_1 = I_2R_2$	1/2	5
	$\therefore \frac{\overline{V_{d1}}}{V_{d2}} = 1$	/2	3
	OR		
	(a) Definition of capacitance 1		
	Obtaining capacitance 2		
	(b) Ratio of capacitances 2		
	a) Capacitance equals the magnitude of the charge on each		
	plate needed to raise the potential difference between	1	
	the plates by unity.		
1			1

OR

[The capacitance is defined as

$$c = \frac{q}{V}]$$

Consider parallel plates of area A

Plate separation d, the potential difference applied across it is V. The electric field

$$E = \frac{\sigma}{\epsilon_0} = \frac{q}{\epsilon_0 A}$$

Electric field = potential gradient

$$\therefore E = \frac{V}{d}$$

Hence, $\frac{V}{d} = \frac{q}{\epsilon_0 A}$

$$c = \frac{q}{V} = \frac{\epsilon_0 A}{d}$$

1/2

$$C_0 = \frac{\epsilon_0 A}{d}$$

1/2

The capacitance of the capacitor, partially filled with dielectric constant K, thickness t is

$$c = \frac{\epsilon_0 A}{\left(d - t + \frac{t}{k}\right)}$$

Given $t = \frac{3d}{4} :: c = \frac{\epsilon_0 \lambda}{d - \frac{3d}{d}}$

$$\therefore \frac{c}{c_0} = \frac{4k}{k+3}$$

1/2

[Alternatively,

The capacitance, with dielectric, can be treated as a series

combination of two capacitors.		
$C_{1} = K \frac{\epsilon_{0} A}{\left(\frac{3}{4} d\right)}$ $C_{2} = \frac{\epsilon_{0} A}{\left(\frac{1}{4} d\right)}$	1/2	
$\left(\frac{1}{4}d\right)$	1/2	
$C_2 = \frac{\epsilon_0 A}{\left(\frac{1}{4}d\right)}$ $\therefore C = \frac{C_1 C_2}{C_1 + C_2} = \frac{\left(K \frac{\epsilon_0 A}{\left(\frac{3}{4}d\right)}\right) \left(\frac{\epsilon_0 A}{\left(\frac{1}{4}d\right)}\right)}{\frac{\epsilon_0 A}{d} \left[\frac{4}{3}k + 4\right]}$ $= \frac{4}{(3+k)} \frac{\epsilon_0 A}{d} = \frac{4}{(3+k)} C_0$ $\frac{c}{c_0} = \frac{4}{k+3} $	1/2	
$\frac{1}{c_0} = \frac{1}{k+3}$	1/2	5
Set1 Q25 a) Statement of Faraday's Law b) Calculation of current c) Lenz's Law 1 (a) Faraday's law: The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit. [Alternately: $e = -\frac{d\emptyset}{dt}$] (b) Area= $\pi R^2 = \pi X 1.44 X 10^{-2} m^2$ $= 4.5 X 10^{-2} m^2$ For $0 < t < 2$ Emf $e_1 = \frac{d\emptyset_1}{dt} = -A \frac{dB}{dt}$ $= -4.5 X 10^{-2} X \frac{1}{2}$ $I_1 = -\frac{e_1}{R} = -\frac{2.25 X 10^{-2}}{8.5} = -2.7 mA$ For $2 < t < 4$ $I_2 = \frac{e_2}{R} = 0$ For $4 < t < 6$ $I_3 = -\frac{e_3}{R} = +2.7 mA$	1 1/2 1/2 1/2	

	Soft iron-core	1	
	Secondary Primary Becondary (a)	1/2	
	Working principle		
	- Whenever current in one coil changes an emf gets induced in the neighboring coil /Principle of mutual induction	1/2	
	Voltage across secondary. $V_{\scriptscriptstyle S} = e_{\scriptscriptstyle S} = -N_{\scriptscriptstyle S} \frac{d\phi}{dt}$ Voltage across primary	1/2	
	$V_p = e_p = -N_p rac{d\phi}{dt}$	1/2	
	$\frac{V_s}{V_p} = \frac{N_s}{N_p} (\text{ here } N_s > N_p)$	1/2	
	In an Ideal transformer		
	Power Input= Power Input	1/2	
	$I_p V_p = I_s V_s$ $\frac{V_s}{V_p} = \frac{I_p}{I_s}$		
	$\therefore \frac{V_s}{V_p} = \frac{N_s}{N_p} = \frac{I_p}{I_s}$	1/2	
	(b) Input power, $P_i = I_i$. $V_i = 15 \times 100$	1/2	
	$= 1500 \text{ W}$ Power output, $P_0 = P_i \times \frac{90}{100} = 1350 \text{ W}$	1/2	
	$\Rightarrow I_0 V_0 - 1350W$ Output voltage, $V_0 = \frac{1350}{3}V = 450V$	1/2	5
Set1 Q26	a) Diagram 1		
	Derivation of the relation 2		
	b) Lens Maker's formula – ½		
	Calculation of f in water – 1½		

1

For small angles

$$\tan \angle NOM = \frac{MN}{OM} : \tan \angle NCM = \frac{MN}{NC}$$

and
$$\tan \angle NIM = \frac{MN}{MI}$$

For ΔNOC , i is exterior angle, therefore

$$i = \angle NOM + \angle NCM = \frac{MN}{OM} + \frac{MN}{MC}$$

Similarly
$$r = \frac{MN}{MC} - \frac{MN}{MI}$$

For small angles Snells law can be written as

$$n_1 i = n_2 r$$

$$\therefore \frac{n_1}{OM} + \frac{n_2}{MI} = \frac{n_2 - n_1}{MC}$$

$$\therefore \frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$$

(b) Lens Maker's formula is

$$\frac{1}{f_a} = \left(\frac{n_2 - 1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

$$\therefore \frac{1}{20} = (1.6 - 1)(\frac{1}{R_1} - \frac{1}{R_2})$$

$$\therefore \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$$

5

Let f be the focal length of the lens in water

$$\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = \frac{0.3}{12 \times 1.3}$$

Or
$$f' = \frac{120 \times 1.3}{3} = 52cm$$

(b) Numerical

1/2

OR

(a) Diagram Obtaining the relation

- 1/2 3
- $1\frac{1}{2}$

(a)

1/2

1/2

From fig $\angle A + \angle QNR = 180^0$ ----- (1)

From triangle $\triangle QNR$ $r_{1+}r_2 + \angle QNR = 180^0$ --(2)

 $\therefore \angle A = r_1 + r_2$

Hence from equ (1) &(2)

The angle of deviation

$$\delta = (i - r_1) + (e - r_2) = i + e - A$$

At minimum deviation i=e and $r_1=r_2$

$$\therefore r = \frac{A}{2}$$

1/2

1/2

And
$$i = \frac{A + \delta m}{2}$$

Hence refractive index

$$\mu = \frac{\sin i}{\sin r} = \frac{\sin\left(\frac{A + \delta m}{2}\right)}{\sin A/2}$$

1/2

(b) From Snell's law $\mu_1 \sin i = \mu_2 \sin r$

Given $\mu_1 = \sqrt{2}$, $\mu_2 = 1$ and $r = 90^0$ (just grazing)

$$\therefore \sqrt{2} \sin i = 1 \sin 90^0 \implies \sin i \frac{1}{\sqrt{2}}$$

$$or i = 45^0$$

1/2

1/2

1/2